
CodeFusion Studio

Page 1 / 138

Table of Contents

User Guide

User guide

About

About

Purpose

Why CodeFusion Studio

Open source

System visibility

Flexibility

Goals

Features

Homepage

Project wizard

Toolchain support

Configuration tools

Debug

Navigation

Supported Processors

Help

Installation

Installation

Software requirements

Software dependencies

Host OS support

Linux support

Installing CodeFusion Studio

Installing CodeFusion Studio

Download

Install

Command line installation

Page 2 / 138

Installing CodeFusion Studio extension

Set up CodeFusion Studio

Set CodeFusion Studio

Installing

Install Olimex USB

Linux configuration

Install Segger J-Link debugger drivers

Project Management

Project management

Create a new project

Launch the new project wizard

Create a project

Open an existing project

Open and migrate example

Duplicate the Example Folder

Open in a single folder workspace

Open in a multi folder workspace

Overview

Tasks to build, clean, flash and debug

Access the tasks

Tasks

Modify build tasks

Launch new terminal

Clear the terminal

Copy and Paste in the terminal

Zephyr

Modify west commands

Example one

Example two

Add compiler arguments

Troubleshooting

Build flags

Debugging

Debugging

Page 3 / 138

Debug an application

Supported microcontrollers

Settings

Activate single debug session

Create new debug configuration

Modify an existing debug configuration

Debugging interface

Controls

Variables

Watch

Call stack

Breakpoints

Peripheral registers

Memory

Disassembly view

Serial output

Debug a multi core application

RV_ARM_Loader example

Set up a workspace

Debug settings

Control the session

Troubleshooting

Debugging

Serial monitor

Tools

Tools

Config Tool

Config Tool

Tool tabs

Pin Mux

Function Config

Clock Confing

Registers

Generate Code

Pin Configuration

Pin Mux

Page 4 / 138

Navigation

Filtering

Peripherals

Enable pins

Conflicts

Function Config

Clock Configuration

Clock config diagram

Navigation

Node types

Configuring clocks

Errors

Accessing CFSUtil

Structure

Help

Analyze

Info

Memory

Symbols

Engines

List

Info

SoCs

List

Export

Generate

Supported formats

Open a file

Open from Activity bar

Open from Explorer

Navigation

Statistics

File overview

Main section sizes

Symbol types

Page 5 / 138

Sections

Largest symbols

Metadata

Header Info

Heuristic Information

Symbols Explorer

Generating additional compiler data

Filters

Queries

Memory Layout

Segments

Sections in a Segment

Symbols in a Section

Uninstall

Uninstall CodeFusion Studio

Uninstall the extension from

Uninstall from file system on Windows

Remove the file system on Linux or Mac

Tutorials

Tutorials

GDB Tutorial

Breakpoints

Conditional breakpoints

Temporary breakpoints

Delete existing breakpoint

Watchpoints

Stack Backtrace

Info

Print

Examine

Examine source code

Page 6 / 138

Find

Multiple image support

Navigation

Breakpoints

Watchpoints

Stack Backtrace

Info

Print

Variables

Examine

examine source code

Find

Multiple image support

Resources

Resources

Additional

Zephyr

Trusted Edge Security Architecture

Features

Installation

Security Foundation Layer

Supported boards

Unified Security Software

Universal Crypto Library

Third party tools

Olimex

Segger J-Link Debugger

Release Notes

Release Notes

1.0.0 Release Notes

Source

About this release

What's new

Tools

Host architecture support

Page 7 / 138

Target architecture support

Known Issues

Project management issues

Tools Issues

Debug issues

Page 8 / 138

User Guide

Page 9 / 138

User guide

Codefusion Studio (CFS) is an embedded software development platform based on Microsoft's Visual Studio

Code (VS Code). Codefusion Studio provides best in class development tooling for embedded processors

and MCUs by providing intuitive tools for newcomers while enabling advanced features for expert embedded

developers.

About CFS

The Installation process

Project creation and management

Debugging single and multi-core applications

Additional Tools

Uninstalling

See Help for details on how to get support with CodeFusion Studio.

You can toggle between light and dark mode using the sun and moon icons on to the top right of this page.

Note

Page 10 / 138

About

Page 11 / 138

About

Learn about CodeFusion Studio, the supported processors, and how to get help.

Understand why we built CodeFusion Studio and our Purpose.

See what Features CodeFusion Studio has to offer.

Learn how to Navigate CodeFusion Studio.

Verify the Supported processors

Get Help with CodeFusion Studio.

Page 12 / 138

Purpose

Embedded software engineering is an increasingly complex problem to solve. As technology marches toward

multi-core, multi-architecture solutions, time to market and development resources are shrinking. Engineers

are expected to deal with this complexity with tools, middleware, and SDKs designed for a single-core,

single-architecture world. Those tools are often proprietary, single-vendor solutions that may become

obsolete. Code generated from these tools is typically inflexible, with limited usefulness in the real world

Why CodeFusion Studio
Embedded engineers need open-sourced tools designed for multi-core systems that provide system visibility

and offer the flexibility to adapt to their development needs, without having to worry about activation servers,

licensing fees, or cobbling together their own makeshift tools.

Open source
Analog Devices’ CodeFusion Studio adheres to an Open Source First design principle. It provides embedded

engineers with robust, extensible tools that they own, designed for long-term use and customization.

Permissively-licensed tools that can be modified to suit unique needs

Open-source toolchains and critical software components

Integration with Zephyr, an open-source operating system

System visibility
CodeFusion Studio provides better system visibility into complex systems.

ELF (Executable and Linkable Format) File Explorer enables users to quickly parse and analyze compiled

binaries, reducing time spent on debugging and profiling. (image 2)(image 3)(image4)

Simultaneous multi-core debug allows multiple cores to be debugged in the same workspace and IDE

(Integrated Development Environment), often with a single hardware debugger.

Integrated register viewer eliminates repetitive datasheet referencing with a graphical representation of

config registers used in the config tools.

Page 13 / 138

Flexibility
CodeFusion Studio also provides flexibility by consolidating technical information in a single data source, for

easy integration into custom tooling and modern automated workflows.

SoC (System on Chip) Data Model provides detailed technical information, including the relationships

between config choices and registers, memory layouts, and pin multiplexing.

This JSON-encoded data model is human and machine-readable, allowing engineers to build custom

tools.

Command-Line First ensures critical actions run on the CLI enabling compatibility with modern CI

pipelines, and better test, build, and deployment processes.

Plugin-based code generation separates design decisions, captured in the config tools, from the code

generation engine, allowing users to tailor code to their own HALs, APIs, or schedulers. (image 1)

Goals
CodeFusion Studio aims to bring embedded software into the modern, heterogeneous world. It enables

repeatable, testable, and maintainable development pipelines that customers fully own. It creates a window

into complex, opaque systems, offering a clearer view of resource allocation and system performance.

Above all, it aims to provide the flexibility engineers need to develop solutions that last as long as the

hardware it’s built to support.

Page 14 / 138

Features

See all the features CodeFusion Studio has to offer.

Homepage
Homepage with quick access links for common tasks, links to articles and videos related to your projects,

user guides, hardware reference manuals, data sheets, and other useful resources.

Page 15 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/about/images/welcome-homepage-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/about/images/welcome-homepage-light.png#only-light

Project wizard
A new project wizard for quickly creating projects as well as example applications to jump-start your

development.

Toolchain support
Toolchain support for building applications on Arm and RISC-V processors.

MSDK projects use the Arm GNU toolchain and the xPack GNU RISK-V embedded GCC toolchain.

Zephyr projects use the Zephyr SDK's Arm and RISC-V toolchains.

Configuration tools
Pin and clock configuration tools for assigning signals to pins, configuring pin values such as input or output

mode and power supply, viewing register details and values, and generating source code to be included in

your project.

Page 16 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/about/images/project-wizard-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/about/images/project-wizard-light.png#only-light

ELF file explorer
ELF File Explorer provides a graphical interface to help understand and analyze the contents of ELF files.

Run SQL queries for symbols found in the ELF file:

Page 17 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/tools/config-tool/images/pinmux-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/tools/config-tool/images/pinmux-light.png#only-light

Browse through segments, sections, and symbols with the interactive memory map:

Page 18 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/about/images/symbols-light.gif#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/about/images/symbols-light.gif#only-light

Debug
Debugging features including breakpoints, disassembly, heterogeneous debug, etc.

Page 19 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/about/images/memorylayout-light.gif#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/about/images/memorylayout-light.gif#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/launch-debug-session-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/launch-debug-session-light.png#only-light

Navigation

An overview of the CodeFusion Studio layout and navigation.

The 1. VS Code activity bar. A vertical bar on the left side of the window, the activity bar provides access

to the CodeFusion Studio homepage.

CFS icon:

The VS Code primary side bar provides access to commonly used container views such as the 2. Quick

Access view and 3. Actions view.

The 4. Support resources provides links to CodeFusion Studio support resources. See CodeFusion Studio

Support for more information.

The 5. VS Code status bar provides access to project information.

For more information on nagivating VS Code, see Visual Studio Code User Interface

Note

Page 20 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/about/images/cfs-homepage-interface-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/about/images/cfs-homepage-interface-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/about/images/cfs-icon-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/about/images/cfs-icon-light.png#only-light
https://code.visualstudio.com/docs/getstarted/userinterface
https://code.visualstudio.com/docs/getstarted/userinterface
https://code.visualstudio.com/docs/getstarted/userinterface

Supported Processors

CodeFusion Studio currently supports the following processors in the following configurations:

Processor MSDK Zephyr Pin Config Clock Config

MAX32655 Yes - - -

MAX32662 Yes - - -

MAX32670 Yes - - -

MAX32672 Yes - - -

MAX32675 Yes - - -

MAX32690 Yes Yes Yes Yes

MAX78000 Yes - - -

MAX78002 Yes - Yes -

Page 21 / 138

https://www.analog.com/en/products/MAX32655.html
https://www.analog.com/en/products/MAX32662.html
https://www.analog.com/en/products/MAX32670.html
https://www.analog.com/en/products/MAX32672.html
https://www.analog.com/en/products/MAX32675.html
https://www.analog.com/en/products/MAX32690.html
https://www.analog.com/en/products/MAX78000.html
https://www.analog.com/en/products/MAX78002.html

Help

The following support resources are available:

Support type Details

Online

Documentation

Online documentation can be found on developer.analog.com

GitHub CodeFusion Studio repository can be found on GitHub

Engineer Zone ADI Engineer Zone is an online community forum where you can search the

answered questions or ask one of your own.

Technical Support To request technical support, submit this Online form

CFS Product Page For downloads and documents related to CodeFusion Studio, visit CodeFusion

Studio

Page 22 / 138

https://developer.analog.com/docs/codefusion-studio/1.0.0/
https://developer.analog.com/docs/codefusion-studio/1.0.0/
https://developer.analog.com/docs/codefusion-studio/1.0.0/
https://github.com/analogdevicesinc/codefusion-studio
https://github.com/analogdevicesinc/codefusion-studio
https://github.com/analogdevicesinc/codefusion-studio
https://ez.analog.com/
https://ez.analog.com/
https://ez.analog.com/
https://support.analog.com/en-US/technical-support/create-case-techsupport/
https://support.analog.com/en-US/technical-support/create-case-techsupport/
https://support.analog.com/en-US/technical-support/create-case-techsupport/
https://analog.com/CodeFusionStudio
https://analog.com/CodeFusionStudio
https://analog.com/CodeFusionStudio
https://analog.com/CodeFusionStudio

Installation

Page 23 / 138

Installation

This section provides instructions for installing and setting up CodeFusion Studio for supported processors.

Software Requirements needed to install CodeFusion Studio

How to Install CFS process

How to Set up CFS

How to Install the VS Code extensions

Optional Install Olimex ARM JTAG Drivers for RISC-V debugging

Optional Install Segger J-Link Drivers

Page 24 / 138

Software requirements

Software dependencies
Tools VS Code extensions depend on:

Microsoft's Visual Studio Code version 1.89.0 or later.

Host OS support
CodeFusion Studio and extensions are supported on the following host operating systems:

Windows 10 or 11 (64-bit)

macOS (ARM64)

Ubuntu 22.04 and later (64-bit)

Linux support
The CodeFusion Studio installer requires the following packages in order to run.

These packages are included in default Ubuntu installations, but may need to be added to headless

installations.

sudo apt install libfontconfig1 libdbus-1-3 libxcb-icccm4 libxcb-image0 libxcb-keysyms1 libxcb-

render-util0 libxcb-shape0 libxcb-xinerama0 libxkbcommon-x11-0 libgl1

Note

Page 25 / 138

https://code.visualstudio.com/

Installing CodeFusion Studio

CodeFusion Studio consists of two components, the SDK and the VS Code Extension.

Installing CodeFusion Studio SDK

Download
 Linux

 macOS

 Windows

Install

The Linux installer downloads without execute permissions. Run chmod a+x <installer> to grant execute

permissions before continuing. The CodeFusion Studio installer doesn't require elevated sudo permissions to

run.

1. Open the downloaded installer wizard to begin the installation process.

Note

Page 26 / 138

https://download.analog.com/codefusion-studio/1.0.0/CodeFusionStudio_1.0.0.run
https://download.analog.com/codefusion-studio/1.0.0/CodeFusionStudio_1.0.0.run
https://download.analog.com/codefusion-studio/1.0.0/CodeFusionStudio_1.0.0.run
https://download.analog.com/codefusion-studio/1.0.0/CodeFusionStudio_1.0.0.dmg
https://download.analog.com/codefusion-studio/1.0.0/CodeFusionStudio_1.0.0.dmg
https://download.analog.com/codefusion-studio/1.0.0/CodeFusionStudio_1.0.0.dmg
https://download.analog.com/codefusion-studio/1.0.0/CodeFusionStudio_1.0.0.exe
https://download.analog.com/codefusion-studio/1.0.0/CodeFusionStudio_1.0.0.exe
https://download.analog.com/codefusion-studio/1.0.0/CodeFusionStudio_1.0.0.exe
http://localhost:8000/docs/codefusion-studio/user-guide/installation/images/installer-setup.png
http://localhost:8000/docs/codefusion-studio/user-guide/installation/images/installer-setup.png

2. Click Next to continue the setup.

3. Specify the folder destination for the install, and click Next.

4. Select the Default or desired components to install, and click Next.

5. Read the license agreement and click the box if you accept the license, then click Next.

6. Select the Start Menu in which to create a shortcut, and click Next.

7. Review setup selections and click Install.

8. Click Finish to close the installer.

Installation path cannot contain spaces.

Command line installation
Invoke the installer with the install switch to install the full package to the default location, with the

following switches:

Switch Effect

--help Provide help output

-t Specify the path to install to

-c Confirms prompts

--al Accept license

If using the --al switch to accept the license, refer to the Licenses directory for the licence text and ensure

you agree with them before using CodeFusion Studio.

To run the installer headless, use the following:

Warning

Note

CodeFusion_Studio_1.0.0 install -c --al

Page 27 / 138

Installing CodeFusion Studio extension
Install the CodeFusion Studio extension from the Visual Studio Code Marketplace.

Page 28 / 138

https://marketplace.visualstudio.com/items?itemName=AnalogDevices.cfs-ide
https://marketplace.visualstudio.com/items?itemName=AnalogDevices.cfs-ide
https://marketplace.visualstudio.com/items?itemName=AnalogDevices.cfs-ide

Set up CodeFusion Studio

Set CodeFusion Studio SDK path
The CodeFusion Studio SDK path should be set automatically during the installation process, but if it is

missing or incorrect then you will be prompted to update it:

Click on Download SDK To download the SDK if it isn't already installed, or Choose SDK path to enter the

appropriate path.

The installation path can also be manually configured under user settings by searching for cfs.sdk.path .

Page 29 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/installation/images/sdk-path-invalid-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/installation/images/sdk-path-invalid-light.png#only-light

Installing VS Code Extensions

The VS Code extensions should be installed automatically as part of the installation process. This step is only

required if you need to manually install an extension.

The CodeFusion Studio VS Code extensions can be found in the VS Code directory in the CodeFusion Studio

installer. To install the *.vsix file, open Visual Studio Code. From the Extensions tab, click Install from

VSIX... from the ellipses menu:

And browse to the desired *.vsix file(s) in your <codefusion-sdk-install>/VSCode directory.

For the CodeFusion Studio IDE, select cfs-ide-*.vsix

Note

Page 30 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/installation/images/extension-installation-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/installation/images/extension-installation-light.png#only-light

Install Olimex USB ARM JTAG Drivers for
RISC-V Debugging

The Olimex ARM-USB-OCD-H debugger is required to debug the RISC-V core on the MAX part families. The

Olimex drivers are not provided directly by CodeFusion Studio so need to be installed manually if RISC-V

debugging is required.

Download and installation instructions can be found in chapter 3 of the Olimex ARM-USB-OCD-h User

Manual

Linux configuration
On Linux the user may need to be added to the dialout group in order to use the Olimex Debugger.

sudo usermod -aG dialout <username>

Page 31 / 138

https://www.olimex.com/Products/ARM/JTAG/_resources/ARM-USB-OCD_and_OCD_H_manual.pdf
https://www.olimex.com/Products/ARM/JTAG/_resources/ARM-USB-OCD_and_OCD_H_manual.pdf
https://www.olimex.com/Products/ARM/JTAG/_resources/ARM-USB-OCD_and_OCD_H_manual.pdf
https://www.olimex.com/Products/ARM/JTAG/_resources/ARM-USB-OCD_and_OCD_H_manual.pdf

Install Segger J-Link debugger drivers

Segger's J-Link is a popular JTAG/SWD debugger supported by CodeFusion Studio. The J-Link drivers are

not provided directly by CodeFusion Studio so need to be installed manually if using a J-Link.

Download and installation instructions can be found on the Segger website at

https://www.segger.com/downloads/jlink/

Page 32 / 138

https://www.segger.com/downloads/jlink/
https://www.segger.com/downloads/jlink/
https://www.segger.com/downloads/jlink/
https://www.segger.com/downloads/jlink/

Project Management

Page 33 / 138

Project management

How to create and manage projects in CodeFusion Studio.

How to Create a New Project

How to Open an existing project

How to Open and migrate an example

Additional CFS settings

Available Tasks such as build, clean, flash and debug

Using the CFS Terminal

Managing Zephyr RTOS projects

Page 34 / 138

Create a new project

New projects are created with the New Project Wizard.

Launch the new project wizard
1. Click the CodeFusion Studio icon in the VS Code activity bar.

2. Click Home in the primary side bar.

3. Under Quick access, click New project to open the new project wizard.

Page 35 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/about/images/cfs-icon-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/about/images/cfs-icon-light.png#only-light

Create a project
1. Enter the project name.

2. Select desired processor from the dropdown menu. Type a partial name to filter.

3. For an ADI board, select the Standard option and then desired board from the dropdown menu.

4. For an custom board, select the Custom option and then provide your custom board file.

Page 36 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/projects/images/new-project-wizard-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/projects/images/new-project-wizard-light.png#only-light

5. Select a firmware platform from the dropdown menu. Either MSDK for bare metal or Zephyr to use the

Zephyr RTOS.

6. Select a template project from the dropdown menu. Type to filter.

7. Use the default location or uncheck the box to choose a different location.

The project location can be edited manually or a new project location can be set using the Browse button.

8. Click Generate.

9. CFS provides a notification to indicate the new project has been created. To open the new project, click

Open Project.

Note

Page 37 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/projects/images/new-project-created-notification-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/projects/images/new-project-created-notification-light.png#only-light

Open an existing project

If the project contains a *.code-workspace file this should be opened directly rather than opening the

project's root directory.

On some systems, files starting with . are hidden by default.

1. Click on File then Open Workspace from File....

2. Navigate to and open the *.code-workspace file.

If the project doesn't contain a *.code-workspace file the workspace directory can be opened using the

following steps.

1. Click the CodeFusion Studio icon in the VS Code activity bar.

2. Click Home in the primary side bar.

3. Under Quick access, click Open Project to open the file explorer.

4. Select the desired project and click Open project.

5. After opening the project, the contents are displayed in the Explorer view in the primary side bar.

If your existing project has not been configured as a CodeFusion Studio project, follow the notifications and

prompts that appear after opening the project to configure the workspace and migrate the project to CFS.

Note

Note

Page 38 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/about/images/cfs-icon-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/about/images/cfs-icon-light.png#only-light

Page 39 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/projects/images/project-explorer.png
http://localhost:8000/docs/codefusion-studio/user-guide/projects/images/project-explorer.png

Open and migrate example

The MSDK contains examples for each microcontroller that demonstrate the usage of peripheral APIs and

other supported libraries. These examples are provided as reference.

Duplicate the Example Folder

We strongly recommend copying the example projects before modifying any files to preserve the original

examples.

1. Open a file explorer.

2. Navigate to your installation directory > SDK > MAX

3. Copy the Examples folder to the desired location.

4. You can now open an example project in a single folder workspace or a multi folder workspace.

Open in a single folder workspace
1. Launch an instance of VS Code.

2. Click on the Explorer icon in the VS Code activity bar.

Warning

Page 40 / 138

3. Click the Open Folder button.

4. Navigate to the location where you saved the example projects.

5. Select the example project to open, and click Add.

If you receive the notification Do you trust the authors of the files in this folder?, check the box labeled

Trust the authors and click Yes, I trust the authors.

6. If the project needs to be migrated to a CodeFusion Studio Project, a notification prompt will appear

asking you to migrate.

Tip

Page 41 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/projects/images/explorer-empty-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/projects/images/explorer-empty-light.png#only-light

7. Confirm the project has been migrated by expanding the .vscode folder and verifying the backup folder

containing MSDK settings is present.

Open in a multi folder workspace
1. Launch an instance of VS Code.

2. Click on the Explorer icon in the VS Code activity bar.

3. Click the Open Folder button.

4. Navigate to the location where you saved the examples.

5. Select two example projects to open, and click Add.

Page 42 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/projects/images/single-migration-successful-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/projects/images/single-migration-successful-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/projects/images/explorer-empty-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/projects/images/explorer-empty-light.png#only-light

You must select two distinct projects, each containing a makefile at the highest level in their respective

folder structure.

6. If the project needs to be migrated to a CodeFusion Studio Project, a notification prompt will appear

asking you to migrate. Click Migrate to continue.

7. Confirm the project has been migrated by expanding the .vscode folder and verifying the backup folder

containing MSDK settings is present.

Warning

Page 43 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/projects/images/select-multiple-folders.png
http://localhost:8000/docs/codefusion-studio/user-guide/projects/images/select-multiple-folders.png
http://localhost:8000/docs/codefusion-studio/user-guide/projects/images/single-migration-successful-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/projects/images/single-migration-successful-light.png#only-light

CFS Settings

Overview
CodeFusion Studio provides additional settings within VS Code. Settings are saved at either the User,

Workspace, or Folder level depending on the number of projects within a configured workspace, and are

used hierarchically: Folder > Workspace > User .

User settings can be modified from the File > Preferences > Settings menu.

Workspace settings can be modified from the File > Preferences > Settings menu or by editing the

.vscode/settings.json in your workspace.

Folder settings can be modified by editing the .vscode/settings.json in your sub directory. Workspace

settings are created when a project is created and will have values related to that project. User settings

have the default values below:

ID Description User Default Value

cfs.cmsis.pack Absolute path to

the CMSIS pack

null

cfs.cmsis.root Path to the root

CMSIS pack

directory

${userHome}/AppData/Local/Analog/Packs

cfs.cmsis.svdFile Absolute path to

the .svd file.

cfs.configureWorkspace Whether this

workspace

should be

configured as an

CodeFusion IDE

project.

No

cfs.debugger.SWD Select the

debugger to use.

MAX32625PICO

cfs.debugPath Path to the

directory

containing the

null

Page 44 / 138

ID Description User Default Value

ELF binary to

debug

cfs.openocd.interface Absolute path to

the OpenOCD

interface script

null

cfs.openocd.riscvInterface Absolute path to

the OpenOCD

interface script

for RISCV core

null

cfs.openocd.path Path to openocd ${config:cfs.sdk.path}/OpenOCD

cfs.openocd.target Absolute path to

the OpenOCD

target / board

script

null

cfs.openocd.riscvTarget Absolute path to

the OpenOCD

target / board

script for RISCV

core

null

cfs.programFile ELF binary to

debug

null

cfs.riscvProgramFile ELF binary to

debug

null

cfs.project.board Target Board

Support Package

(BSP)

EvKit_V1

cfs.project.name Project name ${workspaceFolderBasename}

cfs.project.target Target processor MAX78000

Page 45 / 138

ID Description User Default Value

cfs.sdk.path Absolute path to

your CodeFusion

IDE

null

cfs.toolchain.armAArch32GCC.path Path to the arm-

none-eabi GCC

toolchain

${config:cfs.sdk.path}/Tools/gcc/arm-

none-eabi

cfs.toolchain.riscVGCC.path Path to the RISCV

GCC toolchain

${config:cfs.sdk.path}/Tools/gcc/riscv-

none-elf

cfs.toolchain.selectedToolchain The toolchain to

build the current

project with

arm-none-eabi

cfs.openHomePageAtStartup Launch the CFS

home page when

a CFS project is

opened

Yes

Page 46 / 138

Tasks to build, clean, flash and debug

After creating a project and configuring the workspace, you can run various tasks to create, flash, clean, and

run applications.

Access the tasks
Tasks can be accessed in the following ways:

Open the Terminal menu and select run build task, and select the task.

Open the command palette and enter the task name.

Click on the CodeFusion Studio icon on the activity bar and then select a task from the Actions view (3 in

the diagram below).

Click on the icon in the left side of the status bar (5 in the diagram below).

Select the desired build task:

Page 47 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/about/images/cfs-homepage-interface-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/about/images/cfs-homepage-interface-light.png#only-light

All tasks operate in the same way independent of the mechanism used to invoke them.

Tasks

CFS: build
The CFS: build task compiles the code using make. Options are passed into the make file on the command

line based on the project's settings.json file. It creates the ./build directory, which contains the output

binary and all intermediary object files.

The build configuration variables used by the makefiles are set during project creation or in the workspace,

user or system settings.

Shortcut: Ctrl + Shift + B (Windows/Linux) or Command + Shift + B (Mac).

The build task is also available with shortcuts on the left-hand side of the status bar.

CFS: clean
The CFS: clean task cleans the build output, removing the ./build directory and all of its contents.

The clean task is available with the shortcut on the left-hand side of the status bar.

CFS: clean-periph
The CFS: clear-periph tasks runs CFS: clean as well as removes the build output for the MSDK's peripheral

drivers. Use CFS: clean-periph to recompile the peripheral drivers from source on the next build.

Note

Note

Note

Page 48 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/projects/images/status-bar-build-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/projects/images/status-bar-build-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/projects/images/status-bar-clean-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/projects/images/status-bar-clean-light.png#only-light

CFS: flash
The CFS: flash task first runs the CFS: build task. Then, it flashes the output binary to the microcontroller. It

uses the GDB load and compare-sections commands, and launches an OpenOCD internally using a pipe

connection. This halts the flashed program until the microcontroller is reset, power cycled, or a debugger is

connected. A debugger must be connected correctly to use this task. Refer to the data sheet of your

microcontroller's evaluation board for instructions.

The flash task is available with the shortcut on the left-hand side of the status bar.

CFS: flash and run
The CFS: flash and run task runs the CFS: flash task and resumes execution of the program after flashing is

complete.

CFS: erase flash
The CFS: erase flash task erases all of the application code in the flash memory bank. After running this

task, the target microcontroller is effectively blank. This is useful for recovering from low power (LP)

lockouts, bad firmware, or other issues.

CFS: debug
The CFS: debug task will launch the previous debug session. This may run the CFS: flash command before

running the applicationand halting at the breapoint at main() . The executable file will need to be built using

the CFS: build command before debugging. Care should be made to ensure the executable is up to date

before debugging.

Using the activity view you can select a debug session to launch. See Debugging an application for more

information.

Note

Page 49 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/projects/images/status-bar-flash-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/projects/images/status-bar-flash-light.png#only-light

The clean task is available with the shortcut on the left-hand side of the status bar.

Modify build tasks
To modify the default build and flash tasks, click the Terminal menu and select Configure Tasks.... Select

the task you wish to modify. A copy of the task will be added to your project's .vscode/tasks.json file,

where it can be adjusted to suit your application's needs.

For information on modifying build tasks, see https://code.visualstudio.com/docs/editor/tasks#_custom-

tasks

Note

Page 50 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/projects/images/status-bar-debug-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/projects/images/status-bar-debug-light.png#only-light
https://code.visualstudio.com/docs/editor/tasks#_custom-tasks
https://code.visualstudio.com/docs/editor/tasks#_custom-tasks
https://code.visualstudio.com/docs/editor/tasks#_custom-tasks
https://code.visualstudio.com/docs/editor/tasks#_custom-tasks

CFS Terminal

CodeFusion Studio (CFS) introduces a new terminal called the CFS Terminal.

The CFS Terminal is the default terminal that opens when interacting with CodeFusion Studio projects and

provides additional paths for CodeFusion Studio without needing any additional user configuration. The

underlying shell depends on your host operating system:

cmd on Windows

zsh on Mac

bash on Linux

Launch new terminal
To launch a new CFS Terminal, click the Terminal menu and select New Terminal. You can also select the

expansion arrow next to the + icon in the top right corner of the terminal window and select CFS Terminal.

Clear the terminal
Click on the Views and More Actions... menu (...) in the top right corner of the terminal window and select

Clear Terminal.

Copy and Paste in the terminal

Page 51 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/projects/images/terminal-new-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/projects/images/terminal-new-light.png#only-light

To copy text from the terminal, select the text, and right-clicking on the selected text. Keyboard shortcut:

CONTROL+C (COMMAND+C on Mac).

To paste text to the terminal, right-clicking in the desired location. Keyboard shortcut CONTROL+V

(COMMAND+C on Mac).

Page 52 / 138

Zephyr RTOS projects

Modify west commands
CodeFusion Studio generates a default west build command for your current project (ex.: west build -b

apard32690/max32690/m4).

While the default west build command covers most common build cases, there are situations where you

need to pass additional parameters to west.

Examples of common cases where you want to alter the west build command include:

Setting one-off KConfig parameters that you only want to use for one build: -DCONFIG_FAULT_DUMP=1

Associating an optional config overlay file with your build: -DOVERLAY_CONFIG=my-overlay.conf

Specifying a 'shield' to use with your development board: -DSHIELD=shield_name

There are two main ways you can customize the west build command in CodeFusion Studio:

1. Modify the task associated with the 'build' action.

2. Manually enter a west command using The CFS Terminal.

Example one
To perform a west build with additional OVERLAY_CONFIG parameters, tell the build system to include this

config file in the build operation by passing the parameters on the CFS terminal as follows:

Example two
To debug an application and receive more details when hitting a fault handler, do a one-off build with the

CONFIG_FAULT_DUMP KConfig flag set:

west build -p auto -b apard32690/max32690/m4 -- -DOVERLAY_CONFIG=my-overlay.conf

west build -p auto -b apard32690/max32690/m4 -- -DCONFIG_FAULT_DUMP=1

Page 53 / 138

The double dash -- in the west command line will pass any following arguments directly to CMake.

Add compiler arguments
To pass specific compiler switches to the build system, use zephyr_cc_option in CMakeLists.txt:

Note

zephyr_cc_option(-fstack-usage)

Page 54 / 138

Troubleshooting

Build flags
Having build flags set in environment variables may cause unpredictable build behavior.

If you are seeing flags that appear to be set incorrectly in your projects then check that there are no

environment variables set which may be overriding them.

Examples of such variables are AS, ASFLAGS, CC, CFLAGS, CXX, CXXFLAGS, CPPFLAGS, LD, LDLIBS,

LDFLAGS.

A list of environment variables can be produced by running set on Windows, or env on Linux or Mac.

Note

Page 55 / 138

Debugging

Page 56 / 138

Debugging

This section provides information on debugging in CodeFusion Studio.

How to Debug an application

How to Debug a Multi core application

Page 57 / 138

Debug an application

A default debug configuration is automatically generated with each new project. To manually create or adjust

a debug configuration, refer to the Create New Debug Configuration and Modify an Existing Debug

Configuration sections below.

Make sure you have a successful build for the core you intend to debug. Each project generates a build

directory in the respective project folder. For more information, refer to CFS build task.

Supported microcontrollers
See Supported processors for a full list of supported processors.

If debugging a single Arm core application, continue with these instructions. For debugging multiple cores

together, follow the Debugging a multi core application instructions.

Settings
Debug configuration settings are automatically selected using your CFS workspace settings. Follow the

extension prompts for any undefined settings. Adjust settings manually under the File > Preferences >

Settings menu.

When using the CFS: Debug with GDB and OpenOCD (ARM Embedded) configuration, CFS automatically

searches for and adds the SVD file from the CMSIS Pack directory. For other parts, the SVD file can be

selected manually when prompted.

For more information regarding these settings, refer to CFS Settings.

Activate single debug session
1. Select the Run and Debug icon on the activity bar.

2. Select the CFS: Debug with GDB and OpenOCD (ARM Embedded) from the dropdown menu.

3. Click on the Start Debugging Icon to the left of your selection (green play icon) or press F5.

Warning

Page 58 / 138

To activate the previously utilized debug configuration, click the CFS:Debug icon on the left status bar.

Create new debug configuration
New debug configurations can be created using the following steps:

1. Click the Run tab, and select Add Configuration...

2. Select the appropriate debugger.

For CMSIS devices (such as Cortex-M based targets), the Cortex Debug debugger is recommended since

it supports peripheral registers using SVD files.

3. Select the debug configuration template matching your target:

Supported Targets Type

Cortex-M (CMSIS) CFS: Debug with GDB and OpenOCD (ARM Embedded)

Cortex-M (CMSIS) CFS: Debug with JlinkGDBServer and JLink (ARM Embedded)

RISC-V CFS: Debug with GDB and OpenOCD (RISC-V)

Tip

Tip

Page 59 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/launch-debug-session-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/launch-debug-session-light.png#only-light

4. Save the launch.json file which now contains the chosen debug configuration.

Modify an existing debug configuration
Use the following steps too modify an existing debug configuration:

1. Open the .vscode/launch.json file.

2. Click the Run tab, and select Open Configuration.

3. Make any necessary edits and save the file.

Debugging interface
Debugging in VS Code is done using the Run and Debug View, available in the Activity Bar or under View >

Open View and selecting Run and Debug.

Controls
When connected to a debug session, the Run and Debug view provides a toolbar to control the application

execution. This debugging toolbar contains the following debugging actions:

Name Action

Reset Performs a stop and reload

Page 60 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/open-configuration-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/open-configuration-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/debug-session-toolbar-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/debug-session-toolbar-light.png#only-light

Name Action

Pause Suspends execution to allow debugging

Step Over Steps to the next line, stepping over any function calls

Step Into Steps into any callee functions

Step Out Steps out of the current function to the calling function

Restart Resets the PC to reset address without disconnecting or reloading

Stop Terminates execution and closes the debug session

Variables
The variables view presents all of the variables visible to the current scope and file of debugging. They are

split into different sections for each of use, detailed below. Double clicking on a value allows you to edit the

value, right clicking provides a menu of additional options.

Local

Local variables are the variables in the current function scope.

Global

Page 61 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/viewing-variables-local-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/viewing-variables-local-light.png#only-light

Global variables are the variables in the global scope, visible to anywhere in the application.

Static

Static variables are shown for the current file being viewed from the current PC or call stack selection.

Registers

Registers provides a list of all of the core (non-memory-mapped) registers.

Watch
Allows you to set expressions which are evaluated. These can be simple variables or complex statements.

Page 62 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/viewing-variables-global-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/viewing-variables-global-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/viewing-variables-static-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/viewing-variables-static-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/viewing-variables-registers-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/viewing-variables-registers-light.png#only-light

Expressions aren't context aware, so viewing a local variable from another context will fail to evaluate.

Expressions can set variable values, which will happen each time the expression is evaluated (on step or

pause).

Call stack
Displays the current call stack, with function name, PC address and source information where known.

Selecting a function in the call stack will show the registers and local variables applicable to that function.

Breakpoints
The breakpoints view allows you to see currently set breakpoints, toggle them on/off, and add new

breakpoints. To add a new breakpoint, click on the + icon in the breakpoints view, click in the gutter of the

source line, or right click on a source file and select Add inline breakpoint or click SHIFT + F9. Right-click on

a breakpoint to view a list of operations that can be performed on the selected breakpoint and all breakpoints

in general.

Warning

Page 63 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/viewing-watch-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/viewing-watch-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/viewing-call-stack-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/viewing-call-stack-light.png#only-light

To make a breakpoint conditional; right click on the breakpoint and select Edit breakpoint... then selected

Expression from the drop-down and enter your expression in the text field.

Peripheral registers
The XPeripherals view provides a nested structure of peripheral registers and user-modifiable bits. Hover

over a register or bit to view more information, copy the value to the clipboard or modify the value.

Some bits are reserved and not provided in the list. Care should be taken when writing to an entire register that

any reserved bits are not set.

Memory
The Memory tab in the toolbar above the terminal shows the working memory. This displays a detailed image

of what is currently being stored in memory as the program executes.

Warning

Page 64 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/viewing-breakpoints-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/viewing-breakpoints-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/viewing-breakpoints-conditional-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/viewing-breakpoints-conditional-light.png#only-light

Customizing the memory view

To view a specific region of memory, click on the + icon and enter a memory address.

To customize that memory view, click on the pencil icon which will allow you to change the address, display

name, width and endianness:

Disassembly view
1. Right-click on the main program being executed in the Call Stack view and select Open Disassembly

View to view details of the machine-level instructions generated by the source code during a debugging

session.

Stepping while this view is in focus performs a single assembly instruction step.

Note

Page 65 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/viewing-memory-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/viewing-memory-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/viewing-memory-edit-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/viewing-memory-edit-light.png#only-light

Serial output

Minicom

Minicom is a command line utility for serial port communication on Unix platforms.

You will need minicom if not already installed.

1. Run the following from a terminal:

$ minicom -D /dev/tty.usbxxx -b 115200

where /dev/tty.usbxxx matches your serial device.

Note

Page 66 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/viewing-disassembly-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/viewing-disassembly-light.png#only-light
https://help.ubuntu.com/community/Minicom

When using the example "Hello World" program, the output looks like this:

PuTTY

PuTTY is an open source SSH and telnet client for Windows.

You will need PuTTY if not already installed.

1. In the Session category, select Serial as the Connection type.

2. Set the Serial line to the correct COM port for your device. Use the Windows Device Manager to find

your device under Ports (COM & LPT).

3. Set the Speed (baud rate) to 115200.

4. Click Open to start the serial terminal.

Example

Welcome to minicom 2.9

OPTIONS:

Compiled on Sep 22 2023, 21:10:41.

Port /dev/tty.usbmodem21302, 10:07:03

Press Meta-Z for help on special keys

Hello World!

count = 0

count = 1

count = 2

count = 3

count = 4

count = 5

Note

Page 67 / 138

https://www.putty.org/

Page 68 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/putty-configuration.png
http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/putty-configuration.png

When using the example "Hello World" program, the output looks like this:

VS Code Serial Monitor

Arm CMSIS-DAP debuggers, including the MAXPICO and MAX32xxxx onboard debuggers, use the serial Break

to trigger a target reset. Microsoft's Serial Monitor in VS Code sends the Break before connecting to the serial

port, which will reset the processor when using these debuggers. JLink debuggers do not experience this

behavior. It is recommended to connect to the serial port before starting a debug session, or use an external

serial terminal like Minicom or PuTTY.

You will need the Serial Monitor extension for VS Code if not already installed.

1. Click on Serial Monitor in the toolbar above the terminal.

2. Set the Monitor Mode to Serial.

Example

Warning

Note

Page 69 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/putty-serial-output.png
http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/putty-serial-output.png

3. Set the Port to the port in use by the hardware.

4. Set the Baud rate to 115200

5. Click Start Monitoring. This prints the outputs associated with the source code.

To determine the correct port, view the available ports with the required port disconnected, connect the port

and see which value appears in the dropdown list

When using the example "Hello World" program, the output looks like this:

Linux configuration

On Linux the user may need to be added to the dialout group in order to use your serial ports.

RTOS status
When running an RTOS like Zephyr, you can view essential thread information for the RTOS at a breakpoint

using the XRTOS tab.

Info

Example

sudo usermod -aG dialout <username>

Page 70 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/serial-output-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/serial-output-light.png#only-light

RTOS requirements

Some RTOSes may require changes in order to provide the debug information required by the XRTOS View.

For Zephyr, the following config flags must be enabled in your prj.conf file:

Other RTOSes will have their own required config flags. Please consult the relevant documentation for

configuration information.

You will need the RTOS Views extension for VS Code if not already installed.

Enable thread awareness when debugging

CONFIG_THREAD_NAME=y

CONFIG_DEBUG_THREAD_INFO=y

CONFIG_THREAD_ANALYZER=y

Note

Page 71 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/viewing-xrtos-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/viewing-xrtos-light.png#only-light

Debug a multi core application

CodeFusion Studio provides debugging for supported microcontrollers with multiple cores.

The multi-core architecture of the MAX32xxx and MAX78xxx microcontrollers requires secondary images

contained within the image for the primary core. This means only a single image is required to boot and run a

mulit-core microcontroller.

The secondary core is enabled with a code sequence on the primary core. Debugging the secondary core is

available after MXC_SYS_RISCVRun() has been called on the primary core.

Not all of the dual core evaluation boards have external debug ports for the secondary core. Care should be

taken when selecting a board to work with.

See Supported processors for a full list of supported processors.

RV_ARM_Loader example
The MAX78002 RV_ARM_Loader example is located within the CodeFusion Studio installation at <CodeFusion

Studio Install>/SDK/MAX/Examples/MAX78002/RV_ARM_Loader . This example uses the Arm processor to load

and prepare the RISC-V processor to run a chosen program.

Note

Page 72 / 138

By default, the example runs the MAX78002 Hello_World example on the RISC-V processor, found at

<CodeFusion Studio Install>/SDK/MAX/Examples/MAX78002/Hello_World . To run a different program on the

RISC-V processor, change the RISCV_APP variable in RV_ARM_LOADER/project.mk to point to the root directory of

the program to build and run:

project.mk

Set up a workspace

Copy the example it into a new directory before modifying it so the original example can be restored.

1. Place the MAX78002 Hello_World example (or the example you'd like to run on the RISC-V processor) in

the same directory as the MAX78002 RV_ARM_Loader example.

If the Hello_World project doesn't reside at ../Hello_World relative to RV_ARM_Loader or you want to use a

different project, you will need to update the project.mk within the RV_ARM_Loader example.

2. Click File > Open Folder to open the MAX78002 RV_ARM_Loader example in a single-folder workspace.

3. Click File > Add Folder to Workspace to add the MAX78002 Hello_World example to the workspace.

Note

This file can be used to set build configuration

variables. These variables are defined in a file called

"Makefile" that is located next to this one.

For instructions on how to use this system, see

https://analogdevicesinc.github.io/msdk/USERGUIDE/#build-system

**

Enable the RISC-V loader

RISCV_LOAD = 1

The RISCV application can be changed.

It defaults to Hello_World

RISCV_APP=../Hello_World

Warning

Note

Page 73 / 138

Convert the projects to CodeFusion Studio projects if required. See Open and Migrate Example for more

info.

4. Run the CFS: build to create the build directory which contains the ELF files for the Arm processor. These

files are used for the program file settings.

build/RV_ARM_Loader.elf

build/buildrv/riscv.elf

Debug settings
1. Launch the Arm debug instance using the CFS: Cortex Debug with GDB and OpenOCD (ARM

Embedded) debug configuration.

2. Select configuration/image files if prompted.

3. After the Arm debug session reaches the breakpoint in the main.c code, press Continue on the

debugging tool bar or F5.

4. Confirm RISC-V is running by observing LED0 blinking, or pause the Arm core to check it has passed the

call to MXC_SYS_RISCVRun();

5. Launch the RISC-V debug instance using the CFS: Debug with GDB and OpenOCD (RISC-V) debug

configuration.

6. Select configuration/image files if prompted.

Control the session
The Call Stack can be used to navigate between each debug instance. This provides quick access to the

debugging taking place on each processor.

Note

Page 74 / 138

Troubleshooting

Debugging
Failure to select an option from the quick pick menu results in the debug session ending and an error

notification allowing allowing you another opportunity to set the required setting from a quick pick menu:

No SVD Files present in the CMSIS Pack directory results in an error notification allowing you to to browse

your file directory for an SVD File:

Serial monitor
Failed to open serial port on Linux

The user may need to be added to the dialout group in order to manipulate the serial port.

Example

Example

sudo usermod -aG dialout <username>

Page 75 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/program-file-notification.png
http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/program-file-notification.png
http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/svd-file-notification.png
http://localhost:8000/docs/codefusion-studio/user-guide/debugging/images/svd-file-notification.png

Tools

Page 76 / 138

Tools

The following tools are available in CodeFusion Studio:

The Config Tool used to simplify configurations

The Pin Config used to configure pin multiplexing

The Clock config used to control clocks and related signals.

The CFS Command Line Utility for command line manipulation of configuration tools and parsing ELF files.

The ELF File Explorer for graphic analysis of ELF files.

Page 77 / 138

Config Tool

Page 78 / 138

Config Tool

CodeFusion Studio (CFS) provides a combined configuration tool to allow easy configuration of pin and clock

settings. The Configuration Tool uses CFSCONFIG files which are generated using the New Project wizard.

Clicking on the appropriate .cfsconfig file in your project will open the Config Tool.

See Create a new project or enter create project in the command palette to open the wizard.

Tool tabs
The Config Tool comprises of the following tabs.

Pin Mux
Configures the pin multiplexing. See Pin Config for details.

Function Config
Configures the function of enabled pins. See Pin Config for details.

Clock Confing
Configures the various clocks and divers. See Clock Config for details.

Registers
Displays all registers and corresponding values. The search bar provides filters for modified or unmodified

registers and allows filtering based on partial register names.

Click on the register name to view the register details.

Tip

Page 79 / 138

Registers with an asterisk (*) indicate a value other than the default.

Generate Code
Generates the source files required to configure the pins in the application.

Any pin conflicts must be resolved in PinMUX before code can be generated.

1. Save the configuration file.

2. Select the export module in which the generated code will be run.

3. Click Generate code. This generates files containing the configuration code.

The files created depend on the firmware platform used.

For Zephyr and MSDK projects, the code is built and run automatically if saved using the

recommended filenames.

4. Save the generated files in the application with appropriate names.

Note

Warning

Page 80 / 138

Pin Configuration

The Pin Configuration tool allows you to graphically manipulate the pin muxing and function within your

processor, removing the tedious and error prone elements from manual configuarion. The tool will flag up

any conflicting configurations and show you the available pins and functions for any peripheral.

The Pin Configuration consists of two screens within the Config Tool. For details on accessing the Config

Tool and using the output see Config Tool.

Pin Mux
The map of pins displays the current multiplexing configuration. This will update as peripherals are

configured and will show which pins are available, in use or any conflicts.

Hovering over a pin will provide a summary of what function the pin is and can be assigned to.

Page 81 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/tools/config-tool/images/pinmux-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/tools/config-tool/images/pinmux-light.png#only-light

Navigation
Hover over a pin to view available signal information. Nodes and lines on the diagram show as bold when

enabled and faint when disabled.

The diagram can be zoomed in/out using the scroll wheel of your mouse or by using the zoom icons in the

bottom right corner of the view. The fit to screen icon resizes the diagram to the size of your window.

The diagram can be dragged around the window using the left/primary mouse button or equivalent

touchscreen gestures.

Filtering
The Search field will allow you to find any peripheral or pin by name or number. Any non-matching entries

will be hidden from view. To reset the view, click on the 'x' to the right of the search bar.

Peripherals
On the left of the view is a list of available peripherals. Expand a peripheral by clicking on the arrow on the

left to see all of the pins associated with that peripheral. When any peripheral is selected, all of the pins not

associated with that peripheral are hidden from the pin map.

Enable pins
Under the expanded peripheral is a list of signals containing the signal name and the pin designation.

Toggle the pin to 'on' to assign that signal to that pin. This enables the pin in the generated code and

updates the map.

When a pin is enabled, a configuration icon becomes available. Click on the configuration icon to

configure the functions associated with that pin.

Conflicts
Conflicts occur when multiple signals are configured to use the same pin and will cause operational errors.

Conflicting signals will be shown as red circle in the pin map, hover over that pin to see which peripheral

signals have been assigned.

A conflict is also shown in the signal list under a peripheral with a red X in a circle.

Page 82 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/tools/config-tool/images/icon-fit-to-screen-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/tools/config-tool/images/icon-fit-to-screen-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/tools/config-tool/images/icon-toggle-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/tools/config-tool/images/icon-toggle-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/tools/config-tool/images/icon-config-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/tools/config-tool/images/icon-config-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/tools/config-tool/images/icon-conflict-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/tools/config-tool/images/icon-conflict-light.png#only-light

To resolve a conflict, disable one of the functions associated with that pin.

Function Config
Displays a list of enabled signals and provides options to adjust the configuration of each. Each option has a

default value and can be adjusted with the drop-down menu of allowed options, or a free form text box.

Select the signal name to view the options available.

Examples of options:

Input or output mode

Power supply

Pull-up/pull-down

On Zephyr projects, two additional fields are provided under function config:

Device Tree identifier

phandle identifier

Use the Reset to default link to revert any changes.

Note

Page 83 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/tools/config-tool/images/pin-function-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/tools/config-tool/images/pin-function-light.png#only-light

Clock Configuration

The Clock Configuration is a screen within the Config Tool. For details on accessing the Config Tool and

using the output see Config Tool.

Clock config diagram
This screen allows you configure the clock frequencies that are used by each of the peripherals and cores

on the processor. It includes error checking to ensure that the frequencies used are within the constraints of

the processor specification. After configuring your clock tree, you can generate code that will set the

hardware to the desired configuration.

This visual representation of the clock tree is similar to that found in the processor user guide. The diagram

contains nodes which represent the cores, peripherals, pins, multiplexers, and clock scalers present in the

processor. The frequencies used at each node are shown within the node.

Navigation
Hover over the lines or nodes in the diagram to view frequency and other information. Nodes and lines on the

diagram show as bold when enabled and faint when disabled.

Page 84 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/tools/config-tool/images/clock-config-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/tools/config-tool/images/clock-config-light.png#only-light

The diagram can be zoomed in/out using the scroll wheel of your mouse or by using the zoom icons in the

bottom right corner of the view. The fit to screen icon resizes the diagram to the size of your window.

The diagram can be dragged around the window using the left/primary mouse button or equivalent

touchscreen gestures.

Node types
In the left panel, the nodes from the diagram are listed, grouped by the type of the node:

Core : A core on the processor.

Divider : A frequency step-down scaler node.

Multiplier : A frequency step-up scaler node

Mux : A multiplexer that selects one of its inputs. In some cases, a mux can also direct a single input to

one of its outputs.

Oscillator : An internal oscillator present in the processor.

Peripheral : A peripheral of the processor that is fed by one of the clocks. A peripheral can often be

enabled or disabled.

Pin Input : A pin that can be attached to an external oscillator. To use a pin input you need to assign it

using the Pin Config tool.

Pin Output : A pin that can send a clock out externally. To use a pin output you need to assign it using the

Pin Config tool.

Configuring clocks
Clicking on a node in the diagram or from the node list will show a view with the configuration options

relevant to that node:

Page 85 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/tools/config-tool/images/icon-fit-to-screen-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/tools/config-tool/images/icon-fit-to-screen-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/tools/config-tool/images/clock-config-node-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/tools/config-tool/images/clock-config-node-light.png#only-light

Changing any of the configuration options will be reflected in the diagram.

Only valid options will be enabled by the tool.

Clicking back will take you back to the list.

Some clock settings such as external input and output will require a corresponding pin to be configured via the

Pin Config tool before it can be enabled here.

Errors
Errors that cause nodes to display in red and indicate an error that needs to be resolved:

A frequency out of range: The error indicates whether the frequency is above or below the limits of

operability of the peripheral.

Unconfigured value: This error indicates a required setting has not been specified:

Unspecified frequency at a pin input

Pin mux is not set to direct the clock signal to the peripheral

Note

Page 86 / 138

CFS command line utility

CFSUtil is an executable which provides a lot of the functionality within CodeFusion Studio and can be

invoked directly from the command line.

Accessing CFSUtil
From the CFS Terminal, access CFSUtil with the cfsutil command.

From Windows command prompt, access CFSUtil with <CFS-Install>/Utils/cfsutil/bin/cfsutil.cmd .

From Linux, access CFSUtil with <CFS-Install>/Utils/cfsutil/bin/cfsutil .

This page refers to cfsutil , but the commands used are the same regardless of method used.

Structure
CFSUtil contains a hierarchy of commands and sub-commands, each with their own parameters and help

menus.

Help
Passing --help at any level of the hierarchy shows the help information about that component.

cfsutil --help provides top level help context. cfsutil elf --help provides help context for the elf

component. cfsutil elf info --help provides help context for the info generation of the elf component.

ELF

Note

Example

Page 87 / 138

Provides a series of commands to get information about an ELF file.

Analyze
cfsutil elf analyze [file] [-j]

Provides high-level information about the ELF file, including the platform, stack/heap sizes and flash/sram

sizes.

Use the -j switch to produce output in JSON format.

Info
cfsutil elf info [FILEPATH] [-j] [-h] [-a] [-c] [-s] [-n] [--debug_segments] [--debug_sections] [--

debug_cu] [--debug_lt] [--debug_abbrevs] [--debug_syms] [--debug_dies] [--debug_heuristics] [-v]

Provides more in depth information about the ELF file.

The following switches can be used individually or in combination to select the required information.

Switch Information

-a Attributes

-c Core information about the ELF file

-h Header

-s Size

If debug information is available, the following switches are also available.

Switch Information

--debug_abbrevs Contents of .debug_abbrev section

--debug_cu .debug_info for each compilation unit

--debug_dies Debugging Information Entry (DIE) tree

--debug_heuristics Heuristic information

Page 88 / 138

Switch Information

--debug_lt contents of .debug_line section

--debug_sections List of ELF sections

--debug_segments List of ELF segments

--debug_syms List of symbols

Additional options are available to control the output.

Switch Effect

-j Output in JSON format

-n Do not populate database

-v Verbose output

Memory
cfsutil elf memory [FILEPATH] [-s] [-t] [-y] [-i <value>] [-n <value>] [-j] [-d]

Provides information on symbols, sections or segments within the ELF file.

Available switches:

Switch Effect

-d Print detailed information

-i Display from sectment/segment with id

-s List of segments

-j Output in JSON format

-n Display from sectment/segment with name

Page 89 / 138

Switch Effect

-t List of sections in each segment

-y List the symbols contain in each section

For -t and -y , the sections/symbols to display can be restricted to a segment/section using an id (-i) or a

name (-n).

For -y , the segment/symbols can be restricted to a segment/section using a name (-n).

Symbols
cfsutil elf symbols [FILEPATH] [SQLQUERY] [-j] [-f]

This command allows you to run SQL queries on the symbol table.

This involes queries on a table called symbols with the following fields.

Name Meaning

num Entry number

name Symbol name

type The type associated with the symbol: None, Object, Function or Filename

address The start address of the symbol

section The section containing the symbol

size The size of the symbol

bind The binding type of the symbol: Weak, Local or Global

visibility The visibility of the symbol: Default or Hidden

Any valid SQL construct is supported here, including WHERE , ORDER , LIMIT , LIKE and REGEXP . Some

examples of queries are as follows.

Note

Page 90 / 138

Filter Query examples

Specific colums SELECT name,address FROM symbols

Symbols larger than 100

bytes

SELECT * FROM symbols WHERE size > 100

Largest symbols SELECT * FROM symbols ORDER BY size DESC LIMIT 10

Symbols between addresses SELECT * from symbols WHERE address BETWEEN 0x10000000 AND

0x20000000

The output can be modified with the following switches.

Switch Effect

-f Print full path (if debug info is available)

-j Output in JSON format

Engines
Code is generated from config choices by means of a code generation 'engine'. There are a certain number

of engines included out of the box, and users can author and register additional engines on the command-

line.

The engines command enables you to interact with the list of available and registered code conversion

engines known to cfsutil.

List
cfsutil engines list [-v] [-f text|json]

Lists the available export engines.

Use the -v switch for additional information on the engines.

Use the -f switch to specify the output format: either text (default) or json .

Page 91 / 138

Info
cfsutil engines info NAME [-f text|json]

Provides information about the named engine.

Use the -f switch to specify the output format: either text (default) or json .

SoCs
Each SoC supported by CodeFusion Studio is associated with an SoC Data Model.

This data model is a JSON file that contains information on the package, available memory, config settings

and register details, and other essential information required to enable the graphical config tools and code

generation functionality.

The socs command allows you to interact with the SoC data models known to cfsutil.

List
cfsutil socs list

Provide a list of available SoC data models.

Export
cfsutil socs export -n <value> [-f json] [--gzip] [-i <value>] [-m] [-o stdio]

Outputs the SoC data model in JSON format for the specified SoC. The -n=<name> switch is required, whilst

the rest are optional.

Switch Effect

-n=<name> The name of the SoC.[^1]

-i=<val> The number of spaces for JSON indentation (use `$\'t' for tabs). Default is 2 spaces.

-m Minify the JSON output.

Page 92 / 138

Switch Effect

--gzip Compress the output with gzip

It is recommended to pipe the output to a file, especially if compressing the output:

cfsutil socs export -n=max32690-tqfn --gzip > file.gz

Generate
cfsutil generate -i <value> [-e <value>] [-o <value>] [-v] [-p] [-f text|json] [--force] [--list] [-

-file <value>]

Generates source code from a .cfsconfig file. The -i <filename> switch is required, whilst the others are

optional. The following switches are available.

Switch Effect

-i=<file> The .cfsconfig file to generate from

-o=<directory> The output directory for generated code

-p Preview. Generate output to the console instead of a file

-f=<format> The format of the preview output (either text or json)

-v Generate verbose output

--force Overwrite existing files

--file=<file> Only generate the specified file

--list List the file(s) that will be generated

Note

Page 93 / 138

A list of SoCs can be generated with cfsutil socs list .

Note

Page 94 / 138

ELF File Explorer

The ELF File Explorer enables users to quickly parse and analyze compiled binaries, reducing time spent on

debugging and profiling and providing deeper insights into the application structure.

Supported formats
The CodeFusion Studio ELF File Explorer can open and display the contents of any file with a valid ELF

header. The file extensions supported by the ELF File Explorer are: AXF, ELF, KO, MOD, O, OUT, PRX, PUFF,

and SO.

Open a file

Open from Activity bar
1. Select the CodeFusion Studio icon from the activity bar.

2. Select Open ELF File under ELF File Explorer.

3. Navigate to the ELF file you want to open.

Open from Explorer
Click on any ELF file in the explorer to view the contents of that file.

Navigation
Navigation icons are on the left of the page for: Statistics, Metadata, Symbols and Memory Layout. Help is

available via the help icon in the top right corner.

Statistics

Page 95 / 138

The statistics page provides high level information about the ELF file and it's contents. Information is

displayed in five sections.

File overview
The file overview is a summary of the metadata for the ELF file:

Format: ELF 32-bit or 64-bit.

Data Encoding: Indicates the endianness (little or big endian).

File Type: Executable, relocatable, shared object, or core file.

Architecture: Target architecture (for example Arm, x86).

ABI Version: Application Binary Interface version.

Debug Info: Indicates if the file contains debugging information.

Stripping: Indicates if the file has been stripped of symbol information.

Main section sizes
The main section sizes shows the total memory used in the ELF, with a breakdown of the main data types.

Text: Executable code.

Data: Initialized global and static variables.

Bss: Zero-initialized data, both explicitly zero and uninitialized data.

Page 96 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/tools/images/elf-explorer-statistics-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/tools/images/elf-explorer-statistics-light.png#only-light

Symbol types
Symbol types shows a count of functions and variables by binding: global, local, and weak. Filters are

provided above the table for all, text, data and bss.

Sections
The Sections table provides details on all the sections contained within the ELF.

Largest symbols
The Largest symbols table provides details on the 10 largest symbols in the ELF. Filters are provided above

the table for all, text, data and bss.

Metadata
The metadata page displays a summary of the sizes of each data type used (text, data and bss), and all of

the information contained within the ELF header. This includes information about the architecture, data

layout, ELF version, contents, and flags.

Page 97 / 138

Page 98 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/tools/images/elf-explorer-metadata-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/tools/images/elf-explorer-metadata-light.png#only-light

Header Info
The ELF file header contains metadata about the ELF file, including its type, architecture, entry point,

program headers, and section headers. This information is essential for the operating system to correctly

load and execute the file.

AEABI Attributes
The AEABI (Arm Embedded Application Binary Interface) attributes in an ELF file provide important metadata

about the binary, such as the target architecture, floating-point configuration, and optimization level. These

attributes ensure compatibility and optimize performance by conveying specific details about how the binary

was built, allowing tools and runtime environments to correctly interpret and execute the code.

Heuristic Information
Indicates the presence of any heuristic information detected in the ELF file related to the Zephyr and MSDK

firmware platforms. It can provide information regarding Flash and RAM sizes, among other available data.

Symbols Explorer
The Symbol explorer provides a table of all of the symbols within the ELF file. This table can be sorted by

clicking the title of any column and can be filtered using an SQL query allowing you to access the data in any

way you require.

Page 99 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/tools/images/elf-explorer-symbol-explorer-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/tools/images/elf-explorer-symbol-explorer-light.png#only-light

The default view SELECT * includes the following fields. You can change which fields are shown and in what

order by replacing the * with a list of field names separated by a comma. For example SELECT size,name will

show the size column followed by name.

Column Type Description

num integer The unique number identifying the symbol

name string The name of the symbol

type string The type of the symbol, indicating what kind of entity it represents

address integer The memory address where the symbol is located

section string The section of the program in which the symbol is defined

size integer The size of the symbol in bytes

localstack integer The worst stack usage size for a function (only local stack, not considering

functions called)

stack integer The worst stack usage size for a function (considering functions called)

bind string The linkage type of the symbol (e.g., local, global)

visibility string The visibility of the symbol, indicating its accessibility from other modules

(e.g., default, hidden)

path string The source file location where the symbol is defined

The localstack, stack and path columns are only present when the relevant data is present in the ELF. For

localstack and stack, the following GCC switches are required during build: -fdump-rtl-expand -fstack-usage -

fdump-rtl-dfinish -fdump-ipa-cgraph -gdwarf-4 . These switches are defined by default with CodeFusion

Studio projects.

Generating additional compiler data

Note

Page 100 / 138

To generate SU and CGRAPH files with GCC (required for worst-case stack usage calculations, and call

graph navigation), compile your code with the following flags: -fstack-usage -fdump-ipa-cgraph -gdwarf-4 .

These flags will force the compiler to generate debug information using the DWARF-4 standard, which is the

version currently supported by the built-in DWARF parser.

Zephyr

For Zephyr Projects, add the following flags to CMakeLists.txt:

MSDK

For MSDK projects, add the following flags to the Makefile:

Stack usage and call graph data can only be parsed when generated by GCC.

Filters
The table can be filtered using SQL commands, where the table is named symbols and the fields are as

above.

A quick lookup field is present above the table to search by name or address. Enter a text or numerical value

and press Enter to generate a query.

Queries

zephyr_cc_option(-fstack-usage)

zephyr_cc_option(-fdump-ipa-cgraph)

zephyr_cc_option(-gdwarf-4)

PROJ_CFLAGS += -fstack-usage

PROJ_CFLAGS += -fdump-ipa-cgraph

PROJ_CFLAGS += -gdwarf-4

Note

Tip

Page 101 / 138

Queries can be saved using the save icon to the right of the query field.

Click on the Saved queries button to the right of the query field to see a list of saved queries including some

pre-populated queries. Queries can be edited or deleted from here by clicking on the pencil or trash can

icons.

Saved queries are stored in the user settings so they are available on any project.

Any valid SQL construct is supported here, including WHERE , ORDER , LIMIT , LIKE and REGEXP . Some

examples of queries are as follows.

Filter Query

Specific colums SELECT name,address FROM symbols

Symbols larger than 100

bytes

SELECT * FROM symbols WHERE size > 100

Largest symbols SELECT * FROM symbols ORDER BY size DESC LIMIT 10

Symbols between addresses SELECT * from symbols WHERE address BETWEEN 0x10000000 AND

0x20000000

Symbols from a specific file SELECT * from symbols WHERE path LIKE %main.c%

Symbols starting with string SELECT * FROM symbols WHERE name REGEXP '^init*'

Memory Layout
The Memory Layout page provides a visual representation of the memory map on the left, with a table of

memory segments on the right. The memory map is shared to denote the usage of the memory:

Stripes: Unused memory.

Blank: Read/write memory.

Filled: Read only memory.

Note

Page 102 / 138

Overlapping segments are rendered as smaller rectangles to the right of the main segments. Small segments

may be displayed taller than their actual relative size to enhance readability. Refer to the size value for an

accurate size value.

Hovering over a segment in the memory map provides a summary of the memory segment and highlights the

appropriate table entry.

Hovering over a segment in the table highlights the approprate entry in the memory map.

Segments
The segments table shows a high-level summary of each distinct secment of memory.

The table includes the following fields:

Field Description

Id The unique identifier for the segment

Note

Page 103 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/tools/images/elf-explorer-memory-segments-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/tools/images/elf-explorer-memory-segments-light.png#only-light

Field Description

Type The type of the segment, indicating its purpose (e.g., loadable, dynamic)

Address The memory address where the segment begins

Size The size of the segment in bytes

Flags Permissions and attributes for the segment (R: read, W: write, X: executable)

Align The alignment requirement of the segment in memory in bytes

Clicking on a segment will show you a table with the sections in that segment.

Sections in a Segment
The Sections in a segment table shows a high-level summary of all the sections in that memory segement.

The Sections in a Segment table includes the following fields:

Page 104 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/tools/images/elf-explorer-memory-sections-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/tools/images/elf-explorer-memory-sections-light.png#only-light

Field Description

Num The unique number identifying the section

Name The name of the section

Address The memory address where the section begins

Size The size of the section in bytes

Flags Permissions and attributes for the section described in the flags table

Type The type of the section, indicating its contents and purpose

Flag Description

W write

A alloc

X execute

M merge

S strings

I info

L link order

O extra OS processing required

G group

T TLS

C compressed

x unknown

Page 105 / 138

Flag Description

o OS specific

E exclude

D mbind

y purecode

p processor specific

Clicking on a section will show you a table containing the symbols in that section. To return to the Segments,

click on the Segments link in the breadcrumb at the top left of the page.

Symbols in a Section
The Symbols in a section table shows details for the symbols within that section.

The Symbols in a section table includes the following fields:

Page 106 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/tools/images/elf-explorer-memory-symbols-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/tools/images/elf-explorer-memory-symbols-light.png#only-light

Field Description

Num The unique number identifying the symbol

Name The name of the symbol

Address The memory address where the symbol is located

Size The size of the symbol in bytes

Bind The linkage type of the symbol (for example: local, global)

Visibility The visibility of the symbol, indicating its accessibility from other modules (for example:

default, hidden)

To return to the Sections Segments, click on the appropriate link in the breadcrumb at the top left of the

page.

Page 107 / 138

Uninstall

Page 108 / 138

Uninstall CodeFusion Studio

Uninstall the extension from VS Code
1. Select the Extensions icon from the activity bar.

2. Find the CodeFusion Studio extension in the INSTALLED list.

3. Click on the Manage (cog) icon on the right hand side.

4. Select Uninstall.

Keyboard shortcut to extensions is Control + SHIFT + X (Windows/Linux) or Command + SHIFT + X (Mac).

Note

Page 109 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/uninstall/images/uninstall-extension-light.png#only-light
http://localhost:8000/docs/codefusion-studio/user-guide/uninstall/images/uninstall-extension-light.png#only-light

Uninstall from file system on Windows
1. Navigate to the directory where CodeFusion Studio is installed.

2. Locate the MaintenanceTool.exe application and double click on it.

3. After the MaintenanceTool.exe application launches, select Remove all components from the setup

menu.

4. Click Next to continue.

Page 110 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/uninstall/images/code-fusion-studio-sdk-directory.png
http://localhost:8000/docs/codefusion-studio/user-guide/uninstall/images/code-fusion-studio-sdk-directory.png
http://localhost:8000/docs/codefusion-studio/user-guide/uninstall/images/uninstaller-setup.png
http://localhost:8000/docs/codefusion-studio/user-guide/uninstall/images/uninstaller-setup.png

5. Confirm that the correct directory is being removed and click Uninstall.

6. CodeFusion Studio will now be uninstalled.

Page 111 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/uninstall/images/ready-to-uninstall.png
http://localhost:8000/docs/codefusion-studio/user-guide/uninstall/images/ready-to-uninstall.png
http://localhost:8000/docs/codefusion-studio/user-guide/uninstall/images/uninstalling-progress.png
http://localhost:8000/docs/codefusion-studio/user-guide/uninstall/images/uninstalling-progress.png

7. After the uninstallation completes, you may close the installer by clicking Finish.

Remove the file system on Linux or Mac
The CodeFusion Studio directory can be deleted directly from the filesystem without needing to run an

uninstall utility.

Page 112 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/uninstall/images/uninstallation-complete.png
http://localhost:8000/docs/codefusion-studio/user-guide/uninstall/images/uninstallation-complete.png

Tutorials

Page 113 / 138

Tutorials

GNU Debugger (GDB) covering the basics of the GNU Debugger (GDB) and how to use it with CodeFusion

Studio.

Page 114 / 138

GDB Tutorial

Page 115 / 138

GDB Tutorial

In this tutorial you'll find:

GDB Basics covering the basics of the GNU Debugger (GDB) and how to use it with CodeFusion Studio.

GDB Commands listing common GDB commands.

Page 116 / 138

GDB Basics

The GNU Debugger (GDB) allows you to connect to and debug a wide variety of target devices.

It consists of a pair of command-line tools: a GDB server, and a GDB client. These two tools are used

together to locally or remotely analyze your program and asssembly code, and single step through the

program.

To use GDB, you start a GDB server which physically connects to the target device, and then connect to the

server with a GDB client, allowing you to interact with the target device.

Breakpoints
Breakpoints allow you to set a precise place in your code where execution will stop automatically. GDB has

breakpoint command options to set rich conditions to cause a breakpoint. Setting rich conditions allows you

to debug very specific errors that only reproduce in given conditions.

Conditional breakpoints
Conditional breakpoints allow you to break on a specific line of code only if a certain condition is met. For

example, you can break on a line of code only if a variable is greater than a certain value.

Temporary breakpoints
Temporary breakpoints allow you to set a breakpoint that will only fire once and then delete itself.

Delete existing breakpoint
Recommendation is to delete breakpoints not in use as there are a limited number of hardware breakpoints

available.

Watchpoints

Page 117 / 138

Watchpoints are more powerful than breakpoints because they can evaluate a number of condidtions or

watch until a specific variable is accessed or changed. This gives you more control to look inside structures

or arrays of objects at specific times or debug memory access problems. The drawback is that they are

extremely slow as every instruction will be analyzed by the debugger when you set a watchpoint.

Stack Backtrace
Stack backtrace allows you to rollback the stack frames and see the progression of branches and execution

in the code. This helpes diagnose where you were before you ended up at the breakpoint or where you

stopped the program execution.

Info
Use the Info commands to get contextual information about the current state of the program such as

arguments passed into the function, the state of the core registers, or the current state of variables, local or

global.

Print
Use the print commands to display variables or manipulate variables. Can display arrays of data in a variety

of formats and perform calculations on specific variables or memory addresses. Works on C files.

Examine
Use the examine commands to show the address of a variable or the contents of memory. They can also

display instructions and format information. The examine commands have richer display capabilities than the

print commands and work on C files and assembly files.

Examine source code
The examine source code commands allow you to access the assembly source code of a function.

Page 118 / 138

Find
The find command allows you to scan a specific address range for a pattern or a known value. It allows you

to locate a specific instance, check stack space, or stack memory. Useful for checking the stack overflow or

watermark levels to know how much of your stack has been used.

Multiple image support
GDB normally parses one ELF file at a time, however, using the add-symbol-file command allows you to load

multiple ELF files into the same GDB session and dynamically switch between the files. Useful when

debugging a system with multiple cores or multiple images, allowing you to step accross boundries to

continue debugging.

Page 119 / 138

GDB Commands

Use the following commands to interact with the GNU Debugger (GDB) and debug your program. Many of the

commands have shortcuts that can be used to save time and keystrokes.

Navigation

Command Shortcut Description

ctrl+c N/A Halt the current program execution

continue c Resume execution

step s Step into the function

step [value] s 10 Step the next 10 source lines

next n Run the next line in the function (step over)

next [value] n 10 Run the next 10 lines in current function

until [value] u 20 Run until line 20 of the current file

finish f Run to the end of the function or stack frame

Breakpoints

Command Shortcut Description

break main b main Break on main () entry

break on function b main.c:func Break on function () in main.c

Page 120 / 138

Command Shortcut Description

break on line b main.c:18 Break on line 18 of main.c

break on condition b main.c:18 if foo > 20 Break if foo > 20 (boolean condition)

break and delete tbreak main Fire once and deletes itself

info breakpoints N/A Lists all breakpoints

ignore 2 20 N/A Ignore breakpoint 21 for the first 20 times

disable 2 N/A Disable breakpoint 21

delete 2 N/A Delete breakpoint 21

Watchpoints

Command Description

watch foo Watch foo

watch myarray[10].val Watch .val in myarray[10]

watch *0x1000FEFE Watch memory addr 0x1000FEFE

watch foo if foo > 20 Conditional watch (foo >20)

watch foo if foo + x > 20 Complex conditional expression

info watchpoints Lists all watchpoints

delete 2 Delete watchpoint 21

Stack Backtrace

Page 121 / 138

Command Shortcut Description

backtrace bt Display a stack backtrace (function call history)

frame Display the current stack frame

up Move up the stack

down Move down the stack

Info

Command Description

info locals List all local variables

info variables List all global variables

info args List all function arguments

info registers List all registers

info breakpoints List all breakpoints

info watchpoints List all watchpoints

Print

Command Shortcut Description

print p Print the value of a variable or expression

print variable p foo Print the value of foo

Page 122 / 138

Command Shortcut Description

print multiple p foo+bar Print the complex expression of foo plus bar

print/hex () p/x &main Print the address of main()

print/hex () p/x $r4 Print the value of register r4 in hex

print array () p/a (uint32_t[8])0x1234 Print the array of 8 u32s at address 0x1234

Variables

Variable Description

a Address

b Byte, 1B

c Character

d Decimal point

f Float

g Giant, 8B

h Halfworld, 2B

i Instruction

o Octal integer

s String

t Binary integer

u Unsigned decimal int

Page 123 / 138

Variable Description

w Word, 4B

x Hex integer

z Padded hex

Examine
FMT is a repeat count, followed by a format and size letter.

Command Shortcut Description

examine/[FMT] x Examine the count in format and size

examine variable x foo Show address of variabe foo

examine () x/4c 0x581F Show four characters at address 0x581F

examine () x/4xw &main Show four words in hex at main()

examine source code

Command Description

list Show scr for the current location

list *0x1234 Show source for address 0x1234

list main.C:func Show source for func() from main.C

disas func List ASM code for func()

find /b 0x0, 0x10000, 'H', 'e', 'l', 'l', 'o' 0x581f search for a byte pattern between 0x0 to 0x10000

Page 124 / 138

Command Description

x/s 0x581f Examine string at address 0x581f

Find

Command Description

find Scan a specific address range for a pattern or known value

Multiple image support

Command Description

add-symbol-file Adds new ELF file into the same GDB session

1. Breakpoint and watchpoint numbers can be determined by viewing the $bpnum variable immediately after

creation.

Page 125 / 138

Resources

Page 126 / 138

Resources

CodeFusion Studio supports a variety of tools, frameworks and APIs. Here are links to all of the currently

supported tools and integrations.

Security

SDKs

Third party tools

Additional ADI tools
The secure communication protocol bootloader can be used to generate images and communicate with

the bootloader.

Page 127 / 138

https://www.analog.com/media/en/technical-documentation/user-guides/ug7618.pdf
https://www.analog.com/media/en/technical-documentation/user-guides/ug7618.pdf
https://www.analog.com/media/en/technical-documentation/user-guides/ug7618.pdf

SDK resources

MSDK
The ADI MAX SDK contains the necessary software and tools to develop firmware for the MAX32xxx and

MAX78xxx Microcontrollers. This includes register and system startup files to enable low-level development

for its supported parts.

 Get started with MSDK

Zephyr
A small-footprint kernel designed for use on resource-constrained and embedded systems: from simple

embedded environmental sensors and LED wearables to sophisticated embedded controllers, smart

watches, and IoT wireless applications.

 Zephyr 3.7.0 Documentation (Online) or Zephyr 3.7.0 Documentation (PDF)

Page 128 / 138

https://analogdevicesinc.github.io/msdk/USERGUIDE/
https://analogdevicesinc.github.io/msdk/USERGUIDE/
https://analogdevicesinc.github.io/msdk/USERGUIDE/
https://docs.zephyrproject.org/3.7.0/
https://docs.zephyrproject.org/3.7.0/
https://docs.zephyrproject.org/3.7.0/
https://docs.zephyrproject.org/3.7.0/zephyr.pdf
https://docs.zephyrproject.org/3.7.0/zephyr.pdf
https://docs.zephyrproject.org/3.7.0/zephyr.pdf

Trusted Edge Security Architecture

ADI's security for the Intelligent Edge is seamlessly bundled into CodeFusion Studio with Trusted Edge.

The Trusted Edge provides the foundational layer of security for the customer by melding industry standard

crpyto APIs with the security capabilities our hardware security solutions.

Features
Flexibility - Choose the crypto library that best fits your application. The Trusted Edge supports industry

standard crypto APIs.

Simplicity - Access hardware security capabilities of the complete ADI digital portfolio.

Reduced time-to-market - The Trusted Edge provides a secure foundation for your application, reducing the

time needed to implement security.

Installation
The security installer for CodeFusion Studio is distributed under a non-disclosure agreement (NDA) through

myAnalog.

1. Access analog.com.

2. Log in or sign up for a myAnalog account.

3. After you log in, click Your Account.

4. Select Resources from the left navigation panel.

Page 129 / 138

https://www.analog.com/en/index.html
http://localhost:8000/docs/codefusion-studio/user-guide/resources/images/myanalog.png
http://localhost:8000/docs/codefusion-studio/user-guide/resources/images/myanalog.png

5. Select Software Downloads.

6. Click CodeFusion Studio Trusted Edge Security Architecture Installer.

7. Check the box to indicate that you have read and agree to the software license agreement and click I

Accept.

8. Open the downloaded installer and follow the setup wizard to complete the installation.

Security Foundation Layer

Page 130 / 138

http://localhost:8000/docs/codefusion-studio/user-guide/resources/images/resources-nav.png
http://localhost:8000/docs/codefusion-studio/user-guide/resources/images/resources-nav.png
http://localhost:8000/docs/codefusion-studio/user-guide/resources/images/software-downloads.png
http://localhost:8000/docs/codefusion-studio/user-guide/resources/images/software-downloads.png
http://localhost:8000/docs/codefusion-studio/user-guide/resources/images/accept-license.png
http://localhost:8000/docs/codefusion-studio/user-guide/resources/images/accept-license.png

Crypto library options

mbedTLS

wolfSSL

PSA Crypto API

ADI USS API

Root of Trust Services

Unified Security Software

Secure Storage

Crypto Toolbox

Secure Communication

Universal Crypto Library

Hardware Crypto Accelerators and Security Features

Supported boards
USS Supports: MAX32690

APARD

MAX32690 EvKit

EVAL-ADIN1110

MAXQ1065EVKIT

Unified Security Software
ADI Unified Security Software (USS) offers an API backend that provides Secure Boot, Secure Channel,

Lifecycle Management, Secure Storage, Cryptographic Toolbox, and Attestation. It contains standalone MCU

only software security emulations for ADI MCUs.

Universal Crypto Library
The ADI Universal Crypto Library (UCL) contains state-of-the-art implementation of the crypto algorithms on

ADI MCUs. The UCL contains hashing, encryption/decryption, signature/verification, key exchange, and

random number generation capabilities. It implements countermeasures against side-channel attacks and

utilizes the hardware accelerator of the target ADI platform whenever applicable.

Page 131 / 138

https://www.analog.com/en/resources/evaluation-hardware-and-software/evaluation-boards-kits/ad-apard32690-sl.html
https://www.analog.com/en/resources/evaluation-hardware-and-software/evaluation-boards-kits/max32690evkit.html
https://www.analog.com/en/resources/evaluation-hardware-and-software/evaluation-boards-kits/eval-adin1110.html
https://www.analog.com/en/resources/evaluation-hardware-and-software/evaluation-boards-kits/maxq1065evkit.html

Third party tools

Olimex ARM Debugger
The Olimex ARM-USB-OCD-H Debugging is required to debug the RISC-V core on the MAX part families.

Download and installation instructions can be found in chapter 3 of the Olimex ARM-USB-OCD-h User

Manual

Segger J-Link Debugger
Segger's J-Link is an alternative debugger for ARM cores.

Download and installation instructions can be found on the Segger website at

https://www.segger.com/downloads/jlink/

Page 132 / 138

https://www.olimex.com/Products/ARM/JTAG/_resources/ARM-USB-OCD_and_OCD_H_manual.pdf
https://www.olimex.com/Products/ARM/JTAG/_resources/ARM-USB-OCD_and_OCD_H_manual.pdf
https://www.olimex.com/Products/ARM/JTAG/_resources/ARM-USB-OCD_and_OCD_H_manual.pdf
https://www.olimex.com/Products/ARM/JTAG/_resources/ARM-USB-OCD_and_OCD_H_manual.pdf
https://www.segger.com/downloads/jlink/
https://www.segger.com/downloads/jlink/
https://www.segger.com/downloads/jlink/
https://www.segger.com/downloads/jlink/

Release Notes

Page 133 / 138

Release Notes

1.0.0 Release Notes

See Help for details on how to get support with CodeFusion Studio.

Page 134 / 138

1.0.0 Release Notes

Source
CodeFusion Studio source can be found on GitHub under tag V1.0.0

About this release
CodeFusion Studio 1.0.0 is the first release of CodeFusion Studio. This release includes support for various

MAX32xxx and MAX7800x parts using the Micro SDK or Zephyr. Pin and Clock config tools are available, as

well as an ELF Explorer utility.

What's new

Tools
Pin Config Tool: Manage pin multiplexing and pin config choices in a graphical environment, before

generating code for your SoC.

Clock Config Tool: Enable or disable the clock to various peripherals, and configure any dividers, muxes,

or intermediate steps in the clock tree.

ELF File Explorer: Perform detailed analysis and inspection of ELF file contents. Currently limited to GCC-

derived ELF files.

Quick Action Panel: Access quick links to perform common tasks like build, clean, flash, and debug.

CFS Build Task Icons: Execute selected tasks for the active project with the status bar icons.

CFS Terminal: Use a terminal variant to VS Code that is aware of CFS settings and paths. Call cfsutil ,

Zephyr's west , and more without any manual configuration.

SDK and software
Support for Zephyr 3.7. Get started

Support for the Micro SDK (MSDK). Get started with MSDK

Page 135 / 138

https://github.com/analogdevicesinc/codefusion-studio/releases/tag/V1.0.0/
https://github.com/analogdevicesinc/codefusion-studio/releases/tag/V1.0.0/
https://github.com/analogdevicesinc/codefusion-studio/releases/tag/V1.0.0/
https://docs.zephyrproject.org/3.7.0/
https://docs.zephyrproject.org/3.7.0/
https://docs.zephyrproject.org/3.7.0/
https://analogdevicesinc.github.io/msdk/USERGUIDE/
https://analogdevicesinc.github.io/msdk/USERGUIDE/
https://analogdevicesinc.github.io/msdk/USERGUIDE/

Host architecture support
CodeFusion Studio is supported on the following host operating systems:

Windows 10 or 11 (64-bit)

macOS (ARM64)

Ubuntu 22.04 and later (64-bit)

Target architecture support
Introduced support for the following processors:

Processor MSDK Zephyr Pin Config Clock Config

MAX32655 Yes - - -

MAX32662 Yes - - -

MAX32670 Yes - - -

MAX32672 Yes - - -

MAX32675 Yes - - -

MAX32690 Yes Yes Yes Yes

MAX78000 Yes - - -

MAX78002 Yes - Yes -

Known Issues

Project management issues
No launch.json in imported Zephyr samples.

Page 136 / 138

https://www.analog.com/en/products/MAX32655.html
https://www.analog.com/en/products/MAX32662.html
https://www.analog.com/en/products/MAX32670.html
https://www.analog.com/en/products/MAX32672.html
https://www.analog.com/en/products/MAX32675.html
https://www.analog.com/en/products/MAX32690.html
https://www.analog.com/en/products/MAX78000.html
https://www.analog.com/en/products/MAX78002.html

Zephyr samples do not have a launch.json generated when imported. When trying to debug, you will

be prompted to create a new launch.json file which you can modify as required.

Tools Issues
Clock speeds displayed in Clock Config tool

The clock displayed on the canvas is the input clock to the peripheral and may not take into account

any internal clock dividers in the peripheral itself. Such internal clock dividers are generally configured

when initializing and configuring the peripheral in your application code.

Pin Config for MAX78002

SWD pin configuration (MISC.SWDIO and MISC.SWCLK) may not work as expected. Leave SWDIO , SWCLK ,

and GPIO pins P0.28 or P0.29 disabled in the pin config tool.

Pin Config for MAX32690

P0.18 , P3.8 , and P3.9 cannot be assigned or configured on the MAX32690 WLP. They can only be

used in the default power on mode (inputs, no pulls, using VDDIO).

Spurious compilation errors in headers

Incomplete IntelliSense Configuration prevents IntelliSense scanning all include paths which may result

in false entries in the Problems tab. These can be ignored if the application builds successfully.

GPIO pull strength is inverted under Zephyr.

The Zephyr 3.7 version of the MXC_GPIO_Config() function sets the pull strength inverted. When using

Zephyr, set the Select Pull-up/Pull-down field in the Pin Config tool to the opposite strength of what

you require:

Required Value Select in Config Tool Value of GPIOn_PS

Strong Pull-Up Weak Pull-Up 0

Weak Pull-Up Strong Pull-Up 1

Weak Pull-Down Strong Pull-Down 1

Strong Pull-Down Weak Pull-Down 0

For MSDK projects the values are correct and should be used normally within the Pin Config tool. The value of

the GPIO pull select PS register should be 0 when strong and 1 when weak.

Note

Page 137 / 138

ELF File Explorer doesn't refresh automatically.

If you modify an ELF file while it is open in the ELF Explorer, you will need to close and reopen the file to

see any changes.

Debug issues
Segger JLink does not support all parts. See the following table for details.

Part Issue Alternatives

MAX32662 Not supported Use MAXPICO debugger instead

MAX32670 Not supported Use MAXPICO debugger instead

MAX32690FTHR Serial output not available Use MAXPICO debugger if you need serial output

APARD32690 Serial output not available Use MAXPICO debugger if you need serial output

MAX78000FTHR Not supported Use MAXPICO debugger instead

MAX78002 Not supported Use MAXPICO debugger or MAX78000 instead

When selecting a JLink session for the MAX78002, CodeFusion Studio will use a MAX78000 session implicitly

so no manual intervention is required.

M4 core breakpoints are also set on RISC-V core.

If debugging a dual core application and setting a breakpoint on the M4 that could also apply to the

RISC-V core such as a file and line combination or a symbol that is present in both images, then that

breakpoint will also be applied to the RISC-V core errorenously. This can be avoided by either using a

unique file or symbol name on each core or setting the breakpoints directly from the disassembly view.

Another side effect of this is that the RISC-V appears to have 2 breakpoints set on main , so you may

need to run or step twice to run beyond the first line in your main function.

Note

Page 138 / 138

